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Abstract. A parity-dependent squeezing operator is introduced which imposes different
SU(1, 1) rotations on the even and odd subspaces of the harmonic oscillator Hilbert space. This
operator is used to define parity-dependent squeezed states which exhibit highly non-classical
properties such as strong antibunching, quadrature squeezing, strong oscillations in the photon-
number distribution, etc. In contrast to the usual squeezed states whoseQ and Wigner functions
are simply Gaussians, the parity-dependent squeezed states have much more complicatedQ and
Wigner functions that exhibit an interesting interference in phase space. The generation of these
states by parity-dependent quadratic Hamiltonians is also discussed.

1. Introduction

Squeezed states have been studied extensively in the last few years [1–3]. They exhibit
non-classical behaviour such as oscillations in the photon-number distribution [5], sub-
Poissonian photon statistics (antibunching), reduction of quantum fluctuations in either of
the field quadratures (quadrature squeezing), etc. Squeezing of the two-mode light field was
studied in [2], and squeezing criteria for multi-mode systems were introduced in [4]. It was
pointed out [6] that the usual type of two-mode squeezing defined in [2] is based on reducible
representations of theSU(1, 1) group. A more general kind of two-mode squeezing was
considered [6] where differentSU(1, 1) rotations are imposed on each irreducible sector. It
was shown [6] that the two-mode squeezed states produced by these generalized squeezing
transformations have interesting properties.

In the present paper we study a similar generalization of squeezing for the single-
mode light field. The ordinary single-mode squeezed states are produced by unitary
transformations belonging to a reducible representation ofSU(1, 1). Such reducible
representations contain two irreducible components: the first is the representation that acts
on the ‘even Fock subspace’ (i.e. the subspace spanned by the even number eigenstates)
and the second is the representation that acts on the ‘odd Fock subspace’ (i.e. the subspace
spanned by the odd number eigenstates). In terms of the Bargmann indexk that labels
unitary irreducible representations ofSU(1, 1) [7], the even Fock subspace corresponds to
the representation withk = 1

4, while the odd Fock subspace corresponds to the casek = 3
4.

We impose differentSU(1, 1) rotations on the two irreducible sectors and thus introduce
states whose even and odd components are squeezed with different squeezing parameters.
We refer to these states as the parity-dependent squeezed states.

The parity-dependent squeezed states exhibit highly non-classical behaviour. They are
characterized by more squeezing parameters than the ordinary squeezed states, and we
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find regions of these parameters where there are strong oscillations in the photon-number
distribution, strong antibunching, quadrature squeezing, etc. We demonstrate that these
states can be more strongly antibunched than the ordinary squeezed states. A further
interesting feature of the parity-dependent squeezed states is that theirQ and Wigner
functions are not necessarily Gaussians. The examples that we consider show a very strong
interference in phase space.

2. Parity-dependent squeezed states

2.1. Definitions and basic properties

We consider the harmonic oscillator Hilbert spaceH and express it as the direct sum

H = H0 ⊕ H1 (2.1)

where H0 and H1 are the subspaces spanned by the even and odd number eigenstates,
respectively,

H0 = {|2n〉; n = 0, 1, 2, . . .}
H1 = {|2n+ 1〉; n = 0, 1, 2, . . .} . (2.2)

The projection operators onto these Hilbert spaces are given by

50 =
∞∑
n=0

|2n〉〈2n| 51 =
∞∑
n=0

|2n+ 1〉〈2n+ 1| . (2.3)

They have the usual properties of projection operators:

50 +51 = 1 5i5j = 5iδij i, j = 0, 1 . (2.4)

The parity operator is given by

P = 50 −51 = exp(iπa†a) (2.5)

wherea and a† are the boson annihilation and creation operators. The properties of the
parity operator are

P 2 = 1 Pa = −aP Pa† = −a†P . (2.6)

If |9〉 is an arbitrary state in the Hilbert spaceH with the position-representation
wavefunction9(x) = 〈x|9〉, then the action of the parity operator is the inversion:

P9(x) = 〈x|P |9〉 = 9(−x) . (2.7)

The same property also holds for the momentum representation.
The ordinary single-mode squeezing operator is defined as [1]

S(ξ, λ) = exp(ξK+ − ξ ∗K−) exp(2iλK0)

ξ = −r exp(−iθ) .
(2.8)

The parametersr, θ andλ are real. The operators

K0 = 1
4(aa

† + a†a) K+ = 1
2a

†2 K− = 1
2a

2 (2.9)

form the single-mode bosonic realization of theSU(1, 1) Lie algebra:

[K0,K±] = ±K± [K−,K+] = 2K0 . (2.10)

The Casimir operator is

K2 = K2
0 − 1

2(K+K− +K−K+)

= k(k − 1) = − 3
16 (2.11)
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where the Bargmann indexk labels the irreducible representations ofSU(1, 1) [7]. In the
present casek can acquire two values:14 and 3

4; so we have two irreducible representations.
The even subspaceH0 corresponds to the representation withk = 1

4, and the odd subspace
H1 corresponds to the casek = 3

4. The unitary squeezing operatorsS(ξ, λ) of equation (2.8)
form a reducible representation since they act on both irreducible sectors. More specifically,
they form thek = 1

4 irreducible representation when they act onH0 only and thek = 3
4

irreducible representation when they act onH1 only. Related to this is the fact that

[S(ξ, λ),50] = [S(ξ, λ),51] = 0 . (2.12)

The parity-dependent squeezing operator is defined as

U(ξ0, λ0; ξ1, λ1) = S(ξ0, λ0)50 + S(ξ1, λ1)51

ξj = −rj exp(−iθj )j = 0, 1 .
(2.13)

This is a generalization of the ordinary squeezing operator (2.8). Only in the special case

r0 = r1 θ0 = θ1 λ0 = λ1 (2.14)

does the operator (2.13) reduce to the operator (2.8). The parity-dependent squeezing
operator squeezes each irreducible sector independently. Acting with this operator on the
Glauber coherent state [8]

|β〉 = e−|β|2/2
∞∑
n=0

βn√
n!

|n〉 (2.15)

we obtain the parity-dependent squeezed state:

|β; ξ0, λ0; ξ1, λ1〉 = U(ξ0, λ0; ξ1, λ1)|β〉 = S(ξ0, λ0)50|β〉 + S(ξ1, λ1)51|β〉 . (2.16)

In the special case (2.14), this state reduces to the ordinary squeezed state [1]. Note
that the states50|β〉 and 51|β〉 (with a suitable normalization) are the even and odd
coherent states [9], which are special cases of macroscopic quantum superpositions also
known as the Schrödinger-cat states [10]. We see that the parity-dependent squeezed states
|β; ξ0, λ0; ξ1, λ1〉 can be viewed as superpositions of two differently squeezed Schrödinger-
cat states.

The overlap of two parity-dependent squeezed states with the same squeezing parameters
and different coherent amplitudes is

〈α; ξ0, λ0; ξ1, λ1|β; ξ0, λ0; ξ1, λ1〉 = 〈α|β〉 = exp
(− 1

2|α|2 − 1
2|β|2 + α∗β

)
(2.17)

where we have used the unitarity of the parity-dependent squeezing operator. We also
multiply the identity resolution [8]

1

π

∫
d2β |β〉〈β| = 1 (2.18)

by the operatorU(ξ0, λ0; ξ1, λ1) on the left and by its Hermitian conjugateU †(ξ0, λ0; ξ1, λ1)

on the right in order to prove another form of the identity resolution:

1

π

∫
d2β |β; ξ0, λ0; ξ1, λ1〉〈β; ξ0, λ0; ξ1, λ1| = 1 . (2.19)

Equations (2.17) and (2.19) show that the set of the states{|β; ξ0, λ0; ξ1, λ1〉} with fixed
squeezing parameters and all the complex numbersβ forms an overcomplete basis in the
Hilbert spaceH.
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2.2. Parity-dependent Bogoliubov transformations

We introduce the parity-dependent Bogoliubov transformations:

b ≡ U(ξ0, λ0; ξ1, λ1)aU
†(ξ0, λ0; ξ1, λ1)

b† ≡ U(ξ0, λ0; ξ1, λ1)a
†U †(ξ0, λ0; ξ1, λ1) .

(2.20)

The commutation relation is preserved for the parity-dependent Bogoliubov quasiparticles:

[b, b†] = [a, a†] = 1 . (2.21)

In the special case (2.14), the operatorsb andb† are linear combinations ofa anda†:

b = µja + νja
† b† = ν∗

j a + µ∗
j a

† (2.22)

wherej is either 0 or 1, and we use the notation

µj ≡ coshrj exp(−iλj )
νj ≡ sinhrj exp[−i(θj + λj )]
|µj |2 − |νj |2 = 1 .

(2.23)

However, in general the transformation (2.20) is much more complicated andb andb† are
not linear combinations ofa anda†. Using equation (2.20), we easily prove

U(ξ0, λ0; ξ1, λ1)f (a, a
†)U †(ξ0, λ0; ξ1, λ1) = f (b, b†) . (2.24)

It is easily seen that the parity-dependent squeezed states of (2.16) are the ordinary coherent
states with respect to the Bogoliubov quasiparticles. For example, they are eigenstates ofb:

b|β; ξ0, λ0; ξ1, λ1〉 = β|β; ξ0, λ0; ξ1, λ1〉 . (2.25)

We can also introduce the ‘b-position’ operator

xb = U(ξ0, λ0; ξ1, λ1)xU
†(ξ0, λ0; ξ1, λ1) = b + b†

√
2

(2.26)

whose eigenstates are the ‘b-position’ states:

|x〉b = U(ξ0, λ0; ξ1, λ1)|x〉 xb|x〉b = x|x〉b . (2.27)

The overlap of the parity-dependent squeezed states with the ‘b-position’ states is a simple
Gaussian:

b〈x|β; ξ0, λ0; ξ1, λ1〉 = 〈x|β〉 = π−1/4 exp

[
−β

2
(β∗ − β)−

(
β − x√

2

)2
]
. (2.28)

Consequently, the variances of the ‘b-position’ and ‘b-momentum’ over the parity-dependent
squeezed states are

(1xb)
2 = (1pb)

2 = 1
2 . (2.29)

The uncertainties with respect to the ordinary position and momentum are discussed in
section 3.2.
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2.3. The parity-dependent Hamiltonian

Here we give a Hamiltonian that can produce the parity-dependent squeezed states. Using
the identity

exp(A50 + B51) = 50 exp(A)+51 exp(B) (2.30)

(whereA andB are operators that commute with50 and51), we easily see that quantum
systems governed by the Hamiltonian

H = ωa†a +50(g0a
†2 + g∗

0a
2)+51(g1a

†2 + g∗
1a

2) (2.31)

will evolve ordinary coherent states|β〉 into the parity-dependent squeezed states of
equation (2.16). From the relations50 = (1 + P)/2 and51 = (1 − P)/2, we see that
the Hamiltonian (2.31) contains the parity operatorP = exp(iπa†a). In the special case
g0 = g1, the Hamiltonian (2.31) reduces to the Hamiltonian

H = ωa†a + ga†2 + g∗a2 (2.32)

that describes the degenerate down-conversion process in which the usual single-mode
squeezed states are produced.

3. Quantum statistical properties

3.1. Photon statistics

The number-state decomposition of the ordinary squeezed states|β; ξ, λ〉 = S(ξ, λ)|β〉 is
given by [1]

|β; ξ, λ〉 = 1√
µ

exp

(
−|β|2

2
+ ν∗

2µ
β2

) ∞∑
n=0

1√
n!

(
ν

2µ

)n/2
Hn

(
β√
2µν

)
|n〉 (3.1)

where the parametersµ and ν are defined according to (2.23) andHn(z) are the Hermite
polynomials. By using equation (3.1), we easily obtain the number-state decomposition of
the parity-dependent squeezed states:

|β; ξ0, λ0; ξ1, λ1〉 =
1∑

j=0

1√
µj

exp

(
−|β|2

2
+ ν∗

j

2µj
β2

) ∞∑
n=0

1√
(2n+ j)!

(
νj

2µj

)(2n+j)/2
×H2n+j

(
β√

2µjνj

)
|2n+ j〉 . (3.2)

Then we find that the photon-number distributionP(n) = |〈n|β; ξ0, λ0; ξ1, λ1〉|2 is given by

P(n) = exp(−|β|2 + |β|2 tanhrj cos 2ψj)
tanhnrj

2nn! coshrj

∣∣∣∣Hn ( |β| eiψj
√

sinh 2rj

)∣∣∣∣2

(3.3)

where the indexj is 0 for evenn and 1 for oddn. We use the notation

ψj ≡ φβ + λj + 1
2θj (3.4)

φβ ≡ argβ . (3.5)

Numerical results are shown in figures 1 and 2. The known oscillations [5] in the photon-
number distribution of the ordinary squeezed states also appear in the parity-dependent
case. Due to the fact that the distributions for even and odd photon numbers depend on
different parameters, these oscillations can be enhanced or decreased by a suitable choice
of the parameters. The distributionP(n) of (3.3) shows oscillations of two types: ‘slow’
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Figure 1. The photon-number distributionP(n) for a parity-dependent squeezed state with
|β| = 4, r0 = 0.5, ψ0 = π/2, r1 = 0.1, ψ1 = π/2. The wide peaks on the left- and right-hand
sides contain sharp peaks for odd and even values ofn, respectively.

Figure 2. The photon-number distributionP(n) for a parity-dependent squeezed state with
|β| = 4, r0 = 0.5, ψ0 = 0, r1 = 0.1, ψ1 = π/2. The wide peaks on the left- and right-hand
sides contain sharp peaks for even and odd values ofn, respectively.

oscillations that follow from smooth oscillations of the Hermite polynomials, and ‘rapid’
oscillations (or, more precisely, sharp jumps) between even and odd values ofn. These
jumps follow from the fact that the Hermite polynomials for even and odd values ofn
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behave in a different manner. These features also exist for the ordinary squeezed states,
but in the parity-dependent case it is possible to change independently the behaviour of the
even and odd parts.

The characteristic function

F(z) =
∞∑
n=0

znP (n) (3.6)

allows us to calculate all the normally ordered moments of the number operatorN = a†a:

〈a†pap〉 = 〈N(N − 1) · · · (N − p + 1)〉 = ∂pF

∂zp

∣∣∣∣
z=1

. (3.7)

Combining equations (3.3) and (3.6) and using summation theorems for the Hermite
polynomials [11], we get

F(z) = e−|β|2

2

1∑
j=0

τj
[
ezτ

2
j |β|2 + (−1)j e−zτ 2

j |β|2] exp
[|β|2(1 − τ 2

j z
2) tanhrj cos 2ψj

]
(3.8)

where we have defined

τj ≡ (
cosh2rj − z2 sinh2rj

)−1/2
. (3.9)

Using equations (3.7) and (3.8), we find analytic expressions for the first and the second
moments:

〈a†a〉 = 1
2

1∑
j=0

[
A
(+)
j + (−1)j e−2|β|2A(−)j

]
(3.10)

〈a†2a2〉 = 1
2

1∑
j=0

{[(
A
(+)
j

)2 + B
(+)
j

] + (−1)j e−2|β|2[(A(−)j

)2 + B
(−)
j

]}
(3.11)

where we have defined

A
(±)
j ≡ sinh2rj ± |β|2 cosh 2rj − |β|2 sinh 2rj cos 2ψj (3.12)

B
(±)
j ≡ sinh2rj cosh 2rj ± 2|β|2 sinh2rj (1 + 2 cosh 2rj )

−|β|2 sinh 2rj (1 + 4 sinh2rj ) cos 2ψj . (3.13)

The second-order correlation function

g(2) = 〈a†2a2〉
〈a†a〉2

= 〈N2〉 − 〈N〉
〈N〉2

(3.14)

can be calculated from equations (3.10) and (3.11).
Numerical calculations show that in the caser0 = 0 (only the odd component is

squeezed) antibunching is relatively weak. In this case the minimum value ofg(2) is
approximately 0.75 forr1 = 0.3, ψ1 = 0, |β| ' 1. Much stronger antibunching is obtained
for r1 = 0 (only the even component is squeezed). This situation is shown in figure 3. We
see that the parity-dependent squeezed states are antibunched for small values ofr0 and|β|.
Also, we find that maximum antibunching is achieved forψ0 = 0, i.e. for squeezing in the
direction of the displacement of the initial coherent state. The dependence ofg(2) on ψ0 is
seen from figure 4. Whenψ0 = 0, r1 = 0, very strong antibunching can be achieved for
very small values ofr0 and |β|. This is shown in figure 5 whereg(2) is presented for the
parity-dependent and ordinary squeezed states. We see that the parity-dependent squeezed
states withr1 = 0, ψ0 = 0 exhibit stronger antibunching than the ordinary squeezed states
with r = r0, ψ = 0.
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Figure 3. The second-order correlation functiong(2) versus|β| for r1 = 0, ψ0 = ψ1 = 0 and
various values ofr0. Antibunching appears forr0 < 0.48 and the smallerr0, the stronger the
antibunching.

Figure 4. The second-order correlation functiong(2) versus|β| for r0 = 0.05, r1 = 0, ψ1 = 0
and various values ofψ0. Antibunching is strong forψ0 near zero, but rapidly weakens asψ0

increases.
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Figure 5. The second-order correlation functiong(2) versus|β| for parity-dependent squeezed
states withr1 = 0,ψ0 = 0 (full curve) and ordinary squeezed states withr = r0, ψ = 0 (broken
curve). Various values ofr = r0 are considered.

3.2. Position and momentum uncertainties

The position and momentum operators are defined as

x = 1√
2
(a† + a) (3.15)

p = i√
2
(a† − a) . (3.16)

Their variances

(1x)2 = 〈x2〉 − 〈x〉2 (3.17)

(1p)2 = 〈p2〉 − 〈p〉2 (3.18)

obey the Heisenberg uncertainty relation

(1x)2(1p)2 > 1
4 . (3.19)

The x-representation of the parity-dependent squeezed states can be calculated to be

9(x) = 〈x|β; ξ0, λ0; ξ1, λ1〉 = 1

2

(
1

π

)1/4

exp(−|β|2/2)
1∑

j=0

1√
µj − νj

exp

(
−µ

∗
j − ν∗

j

µj − νj

β2

2

)

×
[

exp

( √
2βx

µj − νj

)
+ (−1)j exp

(
−

√
2βx

µj − νj

)]
exp

(
−µj + νj

µj − νj

x2

2

)
.

(3.20)



2062 C Brif et al

Figure 6. The variance(1x)2 as a function of|β| for φβ = 0, r0 = 0, θ0 = λ0 = θ1 = λ1 = 0
and various values ofr1. For moderate values of|β| and r1 the state is squeezed in thex-
direction,(1x)2 < 1

2 .

Moments of the position operator are found by evaluating Gaussian integrals:

〈x〉 = e−|β|2

2
√

2

1∑
j,l=0

(1 − δjl) �
3/2
j l

[
V
(+)
j l e�jl |β|2 + (−1)jV (−)j l e−�jl |β|2]

× exp
{
i�jl Im [β∗2(µjνl − µlνj )]

}
(3.21)

〈x2〉 = 1
4

1∑
j=0

{(|µj − νj |2 + [
V
(+)
jj

]2) + (−1)j e−2|β|2(|µj − νj |2 + [
V
(−)
jj

]2)}
(3.22)

whereδjl is the Kronecker symbol, and we have defined

�jl ≡ (µjµ
∗
l − νjν

∗
l )

−1 (3.23)

V
(±)
j l ≡ β∗(µj − νj )± β(µ∗

l − ν∗
l ) . (3.24)

Thep-representation of the parity-dependent squeezed states and moments of the momentum
operator can be obtained analogously. Then we can also calculate the uncertainty product
(1x)2(1p)2.

We have studied numerically the behaviour of the variance(1x)2 for φβ = λ0 = λ1 = 0.
Calculations show that the parity-dependent squeezed states are squeezed in thex-direction
for θ0 = θ1 = 0. Squeezing in thep-direction is obtained, accordingly, forθ0 = θ1 = ±π .
In the caser1 = 0, θ0 = 0 we find that(1x)2 → 1

2 exp(−2r0) as|β| → 0. As |β| increases,
(1x)2 increases too. In the caser0 = 0, θ1 = 0 the situation is essentially different, as
shown in figure 6. For small values of|β| (|β| � 1), (1x)2 approaches the coherent-state
value 1

2. As |β| increases,(1x)2 at first decreases below12 (squeezing), reaches a minimum
and then increases monotonically. The uncertainty product(1x)2(1p)2 is plotted in figure 7
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Figure 7. The uncertainty product(1x)2(1p)2 as a function of|β| for φβ = 0, r1 = 0,
θ0 = λ0 = θ1 = λ1 = 0 and various values ofr0. The broken line is the minimum available
value 1

4 .

as a function of|β| for the caseφβ = 0, r1 = 0, θ0 = λ0 = θ1 = λ1 = 0 and various
values ofr0. The uncertainty product is always greater than its minimum allowed value1

4.
This value is achieved only in the limit|β| → 0. Recall that the uncertainty product in the
variablesxb, pb is always 1

4.

4. Q and Wigner functions

Useful information about the field state can be inferred from phase-space quasiprobability
distributions. We start from theQ(α) function:

Q(α) = 1

π
|〈α|β; ξ0, λ0; ξ1, λ1〉|2 . (4.1)

A straightforward calculation gives

〈α|β; ξ0, λ0; ξ1, λ1〉 = 1
2 e−(|α|2+|β|2)/2

1∑
j=0

1√
µj

[
eα

∗β/µj + (−1)j e−α∗β/µj
]

× exp

(
ν∗
j

2µj
β2 − νj

2µj
α∗2

)
. (4.2)

The Wigner function is given by [12]

W(x, p) = 1

π

∫ ∞

−∞
9(x + s)9∗(x − s) e−2ips ds . (4.3)
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Using equation (3.20) for thex-representation wavefunction and evaluating the Gaussian
integrals, we find the following result:

W(x, p) = 1

4π

1∑
j,l=0

�
1/2
j l exp

(
−|β|2 − Zjl − Tjl

x2

2

)

×
{
(−1)j exp

[(
Rjlx − 2ip −Kjl

)2
2Tjl

+ Ljlx

]

+(−1)l exp

[(
Rjlx − 2ip +Kjl

)2
2Tjl

− Ljlx

]

+(−1)j+l exp

[(
Rjlx − 2ip + Ljl

)2
2Tjl

−Kjlx

]

+ exp

[(
Rjlx − 2ip − Ljl

)2
2Tjl

+Kjlx

]}
(4.4)

where we have defined

Zjl ≡ µ∗
j − ν∗

j

µj − νj

β2

2
+ µl − νl

µ∗
l − ν∗

l

β∗2

2
(4.5)

Tjl ≡ µj + νj

µj − νj
+ µ∗

l + ν∗
l

µ∗
l − ν∗

l

(4.6)

Rjl ≡ −µj + νj

µj − νj
+ µ∗

l + ν∗
l

µ∗
l − ν∗

l

(4.7)

Kjl ≡
√

2β

µj − νj
+

√
2β∗

µ∗
l − ν∗

l

(4.8)

Ljl ≡ −
√

2β

µj − νj
+

√
2β∗

µ∗
l − ν∗

l

(4.9)

and�jl is defined by equation (3.23). We see that in the parity-dependent case both theQ

and Wigner functions are given by a superposition of a number of Gaussians and not by a
single Gaussian as in the ordinary case.

For the parity-dependent squeezing the interference in phase space producesQ and
Wigner functions of interesting forms. Figure 8 shows that theQ(α) function for the case
of a strongly squeezed even component is similar to that of a number eigenstate. TheQ(α)

functions shown in figures 9 and 10 haver0 = r1 andλ0 = λ1, but θ0 6= θ1. And yet this is
enough to split the GaussianQ function of an ordinary squeezed state into three Gaussians
in figure 9 and five Gaussians in figure 10. Some examples of the Wigner function for the
parity-dependent squeezed states are shown in figures 11 and 12. In figure 11 we see a big
peak along the linep = 0 and a smaller ‘wave’ along the linex = 0. When these two
structures intersect near the origin, two sharp negative peaks are produced. Besides, two
high positive peaks become at the intersection of the big peak with two smaller Gaussians
perpendicular to it. In figure 12 a very impressive interference occurs along the linex = 0
where sharp positive and negative peaks alternate.
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Figure 8. The functionQ(α) for a
parity-dependent squeezed state with
|β| = 1, φβ = 0, r0 = 4, r1 = 0,
θ0 = θ1 = 0, λ0 = λ1 = 0.

Figure 9. The functionQ(α) for a
parity-dependent squeezed state with
|β| = 3, φβ = 0, r0 = r1 = 3, θ0 = 0,
θ1 = π , λ0 = λ1 = 0.

Figure 10. The functionQ(α) for a
parity-dependent squeezed state with
|β| = 5, φβ = 0, r0 = r1 = 3, θ0 = 0,
θ1 = π , λ0 = λ1 = 0.
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Figure 11. The Wigner function
for a parity-dependent squeezed
state with |β| = 3, φβ = 0,
r0 = 3, r2 = 0, θ0 = π , θ1 = 0,
λ0 = λ1 = 0.

Figure 12. The Wigner function
for a parity-dependent squeezed
state with |β| = 8, φβ = 0,
r0 = r1 = 3, θ0 = 0, θ1 = π ,
λ0 = λ1 = 0.

5. Conclusions

In this paper we have introduced the concept of parity-dependent squeezing for the single-
mode light field. It is based on the fact that squeezing transformations are elements
of the SU(1, 1) Lie group, and therefore we proposed a squeezing operator that acts
differently on distinct irreducible representations ofSU(1, 1). For the case of single-mode
squeezing this operator is parity dependent. We have considered the parity-dependent
Bogoliubov transformations and parity-dependent Bogoliubov quasiparticles. A parity-
dependent quadratic Hamiltonian has been given that evolves coherent states into the parity-
dependent squeezed states. Quantum statistical properties of these states have been studied
in detail. We have found interesting non-classical features such as strong oscillations in the
photon-number distribution, strong antibunching and quadrature squeezing. Results for the
Q and Wigner functions show that parity-dependent squeezing considered in this paper leads
to very interesting interference effects in phase space which are absent in ordinary squeezing.



Parity-dependent squeezing of light 2067

Acknowledgments

CB gratefully acknowledges financial help from the Technion. AM was supported by the
Fund for Promotion of Research at the Technion, by the Technion–VPR Fund, and by the
Harry Werksman Research Fund. AV gratefully acknowledges support from the British
Council in the form of a travel grant.

References

[1] Stoler D 1970Phys. Rev.D 1 3217; 1971Phys. Rev.D 4 2308
Yuen H P 1976Phys. Rev.A 13 2226
Hollenhorst J N 1979Phys. Rev.D 19 1669
Walls D F 1983Nature306 141

[2] Caves C M and Schumaker B L 1985 Phys. Rev.A 31 3068
Schumaker B L and Caves C M 1985Phys Rev.A 31 3093
Schumaker B L 1986 Phys. Rep.135 317

[3] Loudon R and Knight P L 1987J. Mod. Opt.34 709
Teich M C and Saleh B E A 1990Quantum Opt.1 153
Fabre C 1992Phys. Rep.219 215

[4] Simon R, Mukunda N and Dutta B 1994Phys. Rev.A 49 1567 and references therein
[5] Schleich W and Wheeler J A 1987Nature326 574

Vourdas A and Weiner R 1987Phys. Rev.A 36 5866
[6] Vourdas A 1992Phys. Rev.A 46 442
[7] Bargmann V 1947Ann. Math.48 568
[8] Glauber R J 1963Phys. Rev.130 2529; 1963Phys. Rev.131 2766
[9] Dodonov V V, Malkin I A and Man’ko V I 1974 Physica72 597

[10] Schr̈odinger E 1935Naturwissenschaften23 844
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